Potential‐Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media
نویسندگان
چکیده
Single-atom catalysts (SACs) have exhibited high activities for the hydrogen evolution reaction (HER) electrocatalysis in acidic or alkaline media, when they are used with binders on cathodes. However, to date, no SACs have been reported for the HER electrocatalysis in neutral media. We demonstrate a potential-cycling method to synthesize a catalyst comprising single Pt atoms on CoP-based nanotube arrays supported by a Ni foam, termed PtSA-NT-NF. This binder-free catalyst is centimeter-scale and scalable. It is directly used as HER cathodes, whose performances at low and high current densities in phosphate buffer solutions (pH 7.2) are comparable to and better than, respectively, those of commercial Pt/C. The Pt mass activity of PtSA-NT-NF is 4 times of that of Pt/C, and its electrocatalytic stability is also better than that of Pt/C. This work provides a large-scale production strategy for binder-free Pt SAC electrodes for efficient HER in neutral media.
منابع مشابه
Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by util...
متن کاملComputational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution
Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...
متن کاملNanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction.
The hydrogen evolution reaction (HER) via water splitting requires the development of advanced and inexpensive electrocatalysts to replace expensive platinum (Pt)-based catalysts. The scalable hydrothermal synthesis of SnS on N-reduced graphene (N-rGr) sheets is presented for the first time, which is used as a highly-active electrocatalyst with long-term stability in acidic, neutral, and alkali...
متن کاملClean synthesis of 1,8-dioxo-octahydroxanthene derivatives using NBS as an efficient and almost neutral catalyst in aqueous media
An efficient one-pot condensation for the synthesis of 1,8-dioxo-octahydroxanthene is achieved through a condensation of aryl aldehydes and 5,5-dimethyl-1,3-cyclohexandione in the presence of NBS. This method enjoys several advantages such as low cost, simple work up procedure and safe reaction condition. In addition, water was chosen as a green solvent.
متن کاملIonic liquid N-ethylpyridinium hydrogen sulfate as an efficient catalyst for designing indole scaffolds and their antimicrobial behavior
Ionic liquid N-ethylpyridinium hydrogen sulfate has been prepared, characterized and used as an efficient recyclable catalyst for the synthesis of a series of indoles and bis(indolyl)methanes. Latter have been further explored for their potential antimicrobial activity against E coli and Bacillus. The ionic liquid used was recycled in the end and its recovery was facilitated b...
متن کامل